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Abstract

A characteristic analysis on the stability of the governing di�erential equations for an incompressible one-
dimensional two-¯uid model is presented. The stability criteria are newly proposed in terms of the momentum ¯ux
parameters by incorporating the e�ect of void fraction and velocity pro®les. A simpli®ed two-phase ¯ow

con®guration constructed by using existing correlation for distribution parameter and experimentally correlated
velocity pro®les is selected to test the validity of the proposed theory. The curve of calculated momentum ¯ux
parameters is compared with the curve of stability criteria. The simpli®ed ¯ow is found to be stable within a wide

range of void fraction. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

As the two-phase ¯ow in a pipe or channel can be
described by an area averaged one-dimensional two-

¯uid model [1,2], the one-dimensional two-¯uid model
is widely employed in many computer codes, such as
RELAP5/MOD3 [3]. Recently, there were studies on

the well-posedness of the one-dimensional two ¯uid
model. They investigated the validity of governing
di�erential equations and constitutive relations by per-
forming characteristic analyses on the stability of

di�erential equations [4±11]. They indicated that the
governing di�erential equations of the one-dimensional
two-¯uid model could be ill-posed as an initial value

problem. The inclusion of the virtual mass force term
and viscous term resulted in some improvement of the

stability of the di�erential equation [3,7]. However, as
the correct forms of those terms are yet unknown and
those terms have a transient e�ect, the well-posedness

is still an open issue. Here, we revisited the issue of
well-posedness of the two-¯uid model equations. The
role of momentum ¯ux parameters, which accounts for

the e�ect of void fraction and velocity pro®le changes
over a ¯ow area, is investigated in terms of the well-
posedness of governing di�erential equations.

2. One-dimensional two-¯uid model

The area averaged one-dimensional two-¯uid model
is very useful for complicated engineering problems.

The one-dimensional two-¯uid model can be obtained
by integrating the three-dimensional two-¯uid model
over a cross-section and introducing proper mean

values [1,2]. A simple area average over a cross-section
is de®ned by
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hFi � 1=A

�
F dA �1�

and the void fraction weighted mean value is given by

MFkm � hakFki=haki �2�

The density of each phase is considered to be uniform
such that rk=hrki. The axial component of the

weighted mean velocity of phase k is

Mukm � hakuki=haki �3�

Then, the one-dimensional area averaged continuity
equation is written as follows

@ �hakirk�=@ t� @ �hakirkMukm�=@z � hGki �4�

Drop hi, Mm notations for simplicity. Then, the conti-
nuity equation is written as

akDrk=Dt� akrk@uk=@z� rk@ak=@ t� rkuk@ak=@z

� Gk �5�

where D/Dt is a material derivative. When we consider

a simple adiabatic ¯ow in a pipe or duct, we can
assume incompressibility of gas and liquid phase. Then
Eq. (5) can be written for gas and liquid phase as fol-

lows

@a=@ t� ug@a=@z� a@ug=@z � 0 �6�

ÿ@a=@ tÿ uf@a=@z� �1ÿ a�@uf=@z � 0 �7�

where a is gas void fraction.
The one-dimensional area averaged momentum

equation is written as

@ hakirkMukm=@ t� @ �hakirkCvkMukm2�=@z
� ÿhaki@pk=@zÿ 4akwtkw=D

� @ �hakiMtkzz � tTkzzm�=@z� hakirkg cos y

� � pki ÿ pk�@ak=@z� MvkimhGki � hMikiz �8�

For the adiabatic air±water ¯ow Gk=0. The area-aver-
aged form of shear stress becomes 4akwtkw/D. D is the
hydraulic diameter of the pipe. Cvk is momentum ¯ux

parameter de®ned as

Cvk � haku2ki=hakiMukm2 �9�

It accounts for the variation of velocity and void frac-

tion over a cross-section. Therefore, it contains infor-
mation on the ¯ow structure. To investigate the
stability of the di�erential equations we need to know

the constitutive relations for various terms in the right
hand side. The generalized drag force [2] can be rep-
resented as

Nomenclature

Bd volume of bubbles
CD drag coe�cient
CM virtual mass coe�cient

Cvk momentum ¯ux parameter of kth phase
Db bubble diameter
Dg/Dx material derivative with respect to gas vel-

ocity
Dd/Dt material derivative with respect to dispersed

phase velocity

FD drag force
FV virtual mass force
g gravity vector
Mik generalized drag force vector for kth phase

pk pressure of the kth phase
pki interfacial pressure of the kth phase
rb bubble radius

r non-dimensional radial position
t time
uk velocity of the kth phase

vc velocity vector for continuous phase
vk velocity vector of the kth phase

vki interfacial velocity of the kth phase
z axial direction along pipe

Greek symbols
Gk mass generation of the kth phase
ak void fraction of the kth phase

a void fraction of gas
ao void fraction at center
aw void fraction at the wall

mm mixture viscosity
y inclination angle of pipe from the vertical

direction
rc density of continuous phase

rk density of the kth phase
ti interfacial shear stress
tk laminar shear stress of the kth phase

t tk turbulent shear stress of the kth phase
tkw wall shear stress

Subcripts
f, g, k liquid, gas, kth phase
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Mig � ÿMif � aFD=Bd � aFv=Bd

� 9=2a=rb �
p

rfmm=p�
�
t

Dg=Dx�uf

ÿ ug�dx= �
p

tÿ x� �10�

where the standard drag force acting on the particle
under steady-state conditions can be presented in
terms of the drag coe�cient CD and relative velocity

and the virtual mass term is represented as

aFv=Bd � CMrc�Ddvr=Dtÿ vrrvc�

� CMrf �@ �ug ÿ uf �=@ t� ug@ �ug ÿ uf�=@z

ÿ �ug ÿ uf �@uf=@z�� �11�

Previous studies [5±7,9] focused on the role of these
forces on the stability of governing di�erential
equations. It is found that the generalized force tends

to stabilize the ¯ow. Here, we want to focus on the
role of momentum ¯ux parameter by neglecting the
contributions from virtual mass.
Let the algebraic terms of the right-hand side includ-

ing generalized force be represented as M�ik and drop
hi, Mm notations for convenience. Then the momentum
equations for the one-dimensional two-¯uid model can

be presented as follows

rkuk@ak=@ t� rkCvku
2
k@ak=@z� akrk@uk=@ t

� akrkCvk@u
2
k=@z� akukDrk=Dt

� aku2k�Cvk ÿ 1�@rk=@z� akrku
2
k@Cvk=@z

� ÿak@pk=@z�M�ik �12�

Cvk is expected to be a function of velocities, densities,
and void fraction. Here, we make an assumption that
the momentum ¯ux parameters represent a certain

¯ow structure and are determined by the inlet ¯ow
conditions and ¯ow geometry only. Then, it can be
assumed that Cvk is invariant with ¯ow direction, if

the pipe or duct geometry is not changed. Then the
above equation can be approximated by the following
equation by assuming incompressibility of gas and
liquid phase.

rkuk@ak=@ t� rkCvku
2
k@ak=@z� akrk@uk=@ t

� akrkCvk@u
2
k=@z

� ÿak@pk=@z�M�ik �13�

By doing this, we might have lost mathematical rigor-
ousness. However, Eq. (13) is a good ®rst order ap-
proximation. Also by assuming that gas and liquid

phase are at the same pressure, the gas and liquid
momentum equations are written as

arg@ug=@ t� rgug@a=@ t� rgCvgugug@a=@z

� 2argCvgug@ug=@z

� ÿa@p=@z�M�ig �14�

�1ÿ a�rf@uf=@ t ÿ rfuf@a=@ tÿ rfCvfufuf@a=@z

� 2�1ÿ a�rfCvfuf@uf=@z

� ÿ�1ÿ a�@p=@z�M�if �15�

3. Change of type of the governing di�erential equations

3.1. Characteristic analysis

Let x be a vector x=(a, ug, uf , p ), then the system
of continuity and momentum equations can be written

as

�A�@x=@ t� �B �@x=@z � �C � �16�
where [A ], [B ], [C ] are the coe�cient matrices. To in-

vestigate the behavior of this set of di�erential
equations, suppose that arbitrary data for x are speci-
®ed along a curve in z, t plane. Introduce the tangen-

tial variable s(z, t ) and normal variable n(z, t ) along
the curve, then the above equation can be transformed
as

f�A�@n=@ t� �B �@=@zg@x=@n

� �C � ÿ f�A�@s=@ t� �B �@ s=@zg@x=@ s �17�

Since x is given by the initial data as a function of s
along the curve, the terms on the right-hand side are
known. Then the derivative @x/@n will be uniquely

determined, if the determinant of the coe�cient matrix
is non-singular.

j �A�@n=@ t� �B �@n=@z j6� 0 �18�
Therefore, the dependence of the solution on the pre-
scribed initial data can be reduced to an investigation
of the roots of equation

Determinant of f�A�lÿ �B �g � f �l� � 0 �19�
where we have introduced the characteristic curve
l � ÿ@n=@ t=@n=@z:
If we have real roots of l for satisfying f (l )=0,

then the set of di�erential equations is hyperbolic. If
we have a complex conjugate root of l, then the set of
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di�erential equations becomes elliptic. In this case, the
set of equations becomes ill-posed as an initial value

problem. By using Eqs. (6), (7), (14), and (15),
[A ]lÿ[B ] are determined as

lÿ ug ÿa 0 0
ÿ�lÿ uf� 0 ÿ�1ÿ a� 0

rgug�lÿ Cvgug� arg�lÿ 2Cvgug� 0 ÿa
ÿrfuf�lÿ Cvfuf� 0 �1ÿ a�rf�lÿ 2Cvfuf � 0

�20�

The determinant of this matrix becomes

f �l� � ÿa�1ÿ a���1ÿ a�rg�llÿ 2lCvgug

� Cvgugug� � arf �llÿ 2Cvfufl� Cvfufuf�� �21�

If we do not consider the e�ect of void distribution
and velocity distribution across the pipe, the momen-

tum ¯ux distribution parameters are equal to 1. Then
Eq. (21) becomes,

f �l� � ÿ a�1ÿ a���1ÿ a�rg�lÿ ug�2
� arf�lÿ uf �2� �22�

The equation f(l )=0 can have real roots only if

l=ug=uf . It requires that gas and liquid speed should
be equal. Otherwise, the two-¯uid model becomes ill-
posed as pointed out by Gidaspow [4]. For single-
phase ¯ow where a equals 1 or 0, Eq. (21) becomes

f �l� � rg�llÿ 2lCvgug � Cvgugug�, or

rf �llÿ 2Cvfufl� Cvfufuf�
�23�

It always has real characteristics, l � C
p

vgug, or l �
C
p

vfuf : Then, the governing di�erential equations are
always hyperbolic type and well-posed.
Let us consider the e�ect of momentum ¯ux distri-

bution parameters. To have real roots for l for the
equation f(l )=0, it is required from Eq. (21) that

F�a, Cvg, Cvf , ug, uf , rf , rg�

� ��1ÿ a�rgCvgug � arfCvfuf ���1ÿ a�rgCvgug

� arfCvfuf � ÿ ��1ÿ a�rg � arf ���1ÿ a�rgCvgugug

� arfCvfufuf �r0 �24�
Eq. (24) indicates that the momentum ¯ux distribution
parameters can make the two-¯uid model have real
roots without imposing the unrealistic condition that

the liquid and gas velocity should be equal. It indicates
that the void fraction and velocity distributions have a

stabilizing e�ect. If we have positive F(a ), the two-
¯uid model equation allows two real characteristic

roots for l. Since we assumed incompressible gas and
liquid phase, the characteristic roots related to the

sound speed do not appear here. It is clear that if

momentum ¯ux parameters behave in such a way that
above inequality is always met, then the two-¯uid
model becomes well-posed.

3.2. Relation between Cvg and Cvf

Eq. (24) indicates that either Cvg, or Cvf need to be
bigger than 1 to have real roots for f(l )=0. Let
rm=(1ÿa )rg+arf , Mg=(1ÿa )rgCvgug, Mf=arfCvfuf ,
then Eq. (24) can be rearranged as

F�a, Cvg, Cvf , ug, uf , rf , rg�

� �Mg �Mf �2 ÿ rmMgug ÿ rmMfuf

� �Mg �Mf ÿ rmug=2�2 ÿ rmMfuf � rmMfug

ÿ �rmug=2�2r0

�25�

It requires that

�Mg �Mf ÿ rmug=2�2

r�rmug=2�2 ÿ rmMf�ug ÿ uf�
�26�

If the right-hand side of Eq. (26) is negative, above

inequality is always met. Therefore, if the following
inequality is met, the ¯ow is stable.

4Mf�ug ÿ uf �rrmu
2
g �27�

Let S=ug/uf and call it slip ratio and R=arf /
((1ÿa )rg) and call it modi®ed density ratio. Assume
that uf is positive. Then, if S is less than 1, above

inequality requires Cvf be negative. It is not physically
reasonable. If S is bigger than 1, it is required

Cvfr 1
4 �1=R� 1�S 2=�Sÿ 1�, S > 1 �28�

When the right-hand side of Eq. (26) is positive,
inequality (26) is equivalent to

Mgr0:5rmug � ��rmug=2�2 ÿ rmMf �ug ÿ uf ��1=2 ÿMf �29�
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MgR0:5rmug ÿ ��rmug=2�2 ÿ rmMf �ug ÿ uf ��1=2 ÿMf �30�

Let ug be positive for convenience, then

Cvgr0:5�1� R� � 0:5��1� R�2

ÿ 4�1� R�RCvf1=S
2�Sÿ 1��1=2 ÿ RCvf1=S

�31�

CvgR0:5�1� R� ÿ 0:5��1� R�2

ÿ 4�1� R�RCvf1=S
2�Sÿ 1��1=2 ÿ RCvf1=S

�32�

Eqs. (28), (31), and (32) de®ne the stability boundary
between the stable region and unstable region. Slip

ratio S and modi®ed density ratio R determine the
boundary. When S > 1, two-¯uid model can be stable
if Cvf satis®es Eq. (28). If Cvf is less than that speci®ed

by Eq. (28), then Cvg and Cvf should satisfy Eq. (31)
or (32). When S R 1, the Cvg and Cvf should satisfy
Eq. (31) or (32). Let us consider the case with S > 1,
this is practical for vertical air±water ¯ow. Then Eq.

(28) indicates that if the liquid momentum ¯ux par-
ameter is bigger than a certain value, the ¯ow is stable.
Fig. 1 shows the stability boundary in terms of

liquid momentum ¯ux parameter for various values of
R at 1, 10, and 100 depending on the slip ratio S.
Above the curve is the stable region. Fig. 2 shows

boundaries of Eqs. (31) and (32) at R = 100 and
S = 2. Above the upper curve and below the lower
curve are stable regions. The upper curve represents

Eq. (31) and lower curve represents Eq. (32). The

upper curve is concave and encloses the square de®ned
by (0, 0), (0, 1), (1, 0), (1, 1). In a real physical system
Cvg and Cvf are close to 1. The lower curve does not

seem to have physical meaning. The upper curve indi-
cates that Cvg can be close to one only when Cvf is

Fig. 1. Stability boundary presented by the liquid momentum ¯ux parameter Cvf and the slip ratio S.

Fig. 2. Stability boundary presented by the gas momentum

¯ux parameter Cvg and the liquid momentum ¯ux parameter

Cvf.
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really close to one. For counter-current ¯ow, the right
hand side of Eq. (26) becomes always positive for posi-

tive gas velocity. Then Eqs. (29) and (30) determine
the stable boundary.

4. Stability of a simpli®ed ¯ow con®guration

As the ¯ow condition changes, the two-phase ¯ow

adjusts its structure according to the conservation laws
presented by the two-¯uid model. The changes in mor-
phology can be represented by the changes in velocity
and void fraction pro®les. As the momentum ¯ux par-

ameters represent those changes in the one-dimensional
two-¯uid model, it is interesting to investigate the role
of momentum ¯ux parameters. In the above section it

is claimed that the momentum ¯ux parameters deter-
mine the stability of the two-phase ¯ow. So, it is poss-
ible that the governing di�erential equation for the

two-¯uid model can change type similar to that of
compressible ¯ow, transonic ¯ow or shock, or it does
not change type, if momentum ¯ux parameters vary in
such a way that the two-¯uid model becomes always

stable. Here, we look at the changes in momentum ¯ux
parameters and stability of a two-¯uid model in simpli-
®ed two-phase ¯ow con®gurations.

4.1. Momentum ¯ux parameters

The experimental data for the void fraction pro®le

and velocity pro®les can be approximated by a power-
law pro®le. We will look into the stability of these ¯ow
pro®les by calculating the momentum ¯ux parameters

and compare it with the stability criteria determined in
Section 3. The void fraction pro®le and velocity pro®le
in bubbly and slug ¯ow can be approximated by
power-law pro®le [2,12] as follows

a � aw � D�1ÿ rn� �33�

vg � vwg � vog�1ÿ rm� �34�

vf � vwf � vof�1ÿ rq� �35�
where D=(aoÿaw). ao is void fraction at the center, aw
is void fraction at the wall, and r is the non-dimen-
sional radial position. vwg is gas velocity very near
wall, vog is gas relative velocity at the center, vwf is

liquid velocity very near the wall, vof is liquid relative
velocity at the center. Average void fraction and vel-
ocity are determined as

hai � aw � Dn=�n� 2� �36�

Mvgm � havgi=hai �37�

Mvfm � hvf ÿ avfi=h1ÿ ai �38�

Then, the momentum ¯ux distribution parameter for
gas is de®ned as

Cvg � hav2gi=haiMvgm2 � haihav2gi=havgi2 �39�

Assuming that the velocities of gas and liquid at the
wall are negligibly small.

havgi � haihvgi

� Dvgon=�n� 2�m=�m� 2� 2=�n�m� 2�
�40�

hav2gi � haihvgi2 � �vogm=�m� 2��2=�m� 1�hai

� Dv2ogn=�n� 2�m=�m� 2�m=�m� 1�2

=�2m� n� 2��1� �2m� 2�=�m� n� 2�� �41�

With similar argument the momentum ¯ux parameter

for liquid ¯ow becomes,

Cvf � hafv
2
f i=hafiMvfm2 � hafihafv

2
f i=hafvfi2 �42�

hafvfi � �1ÿ hai�hvfi
ÿ Dvfoq=�q� 2�n=�n� 2�2=�n� q� 2� �43�

hafv
2
f i � h1ÿ aihvfi2 � �vofq=�q� 2��2=�q� 1�h1ÿ ai
ÿ Dv2ofn=�n� 2�q=�q� 2�q=�q� 1�2
=�2q� n� 2��1� �2q� 2�=�q� n� 2�� �44�

The preceeding equations show that momentum ¯ux
parameters are functions of n, m, q, ao, aw, vog, vof.
They change their values according to the various driv-

ing forces, which appear on the right hand side of
momentum equations. It is a plausible assumption that
the momentum ¯ux parameters change in such a way

that the two-¯uid model becomes always stable.

4.2. Volumetric distribution parameter and average slip

ratio

There are many experimental data for gas, liquid
velocities and void fraction pro®les [13±17]. However,
the data are not complete enough to determine all of

the parameters for power-law pro®le. Therefore, we
selected the simpli®ed ¯ow con®guration to investigate
the physical signi®cance of the above mentioned stab-

ility criteria.
In a dispersed bubbly ¯ow, it can be assumed that

the local gas and liquid velocities are the same, when
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relative velocity is negligibly small. Then q is equal to
m. By using this simpli®ed ¯ow con®guration and

existing correlation for volumetric distribution par-
ameter Co, we can calculate momentum ¯ux par-
ameters. Then, we can compare it with the stability

criteria. According to Ishii [12] the e�ect of void pro-
®le over a cross-section is typically presented by the
volumetric distribution parameter de®ned as

Co � haji=haihji �45�
where j is volumetric ¯ux. When the void fraction is
less than 0.7, a lot of data for pipe ¯ow are correlated

[12] as

Co � �1:2ÿ 0:2 �p rg=rf ���1ÿ eÿ18hai� �46�

which is a function of average void fraction and den-
sity ratio.

Assuming that liquid and gas velocities at the wall
are very close to zero, the volumetric distribution par-
ameter is determined as

Co � 1ÿ 2=�m� n� 2��aw=hai ÿ 1� �47�
and by de®nition slip ratio is

S � Mvgm=Mvfm � �1ÿ hai�Co=�1ÿ Cohai� �48�

Since distribution parameter Co is a function of an
average gas void fraction and the density ratio, if the
velocity pro®le is known the power n of the void frac-

tion pro®le and slip ratio are uniquely determined by
Co and the average void fraction at a given density
ratio. As two parameters slip-ratio S and modi®ed

density ratio R determine the stability criteria derived
in Section 3, we can compare the momentum ¯ux par-
ameters determined by this procedure and those
allowed by stability criteria.

4.3. Center-peaked void fraction

Experimental researches [13±17] indicate that the
void fraction has a power law pro®le with center-peak
shape when the void fraction is between 0.2 and 0.7

for adiabatic air±water ¯ow. To approximate this pro-
®le, let us assume wall void fraction is very close to
zero. Then the momentum ¯ux parameters are deter-
mined as

Cvf ÿ 1 � �m� 2�=�m� 1��1� I�m, Co��=C 2
o �49�

Cvg ÿ 1 � �1ÿ hai��m� 2�=�m� 1��1ÿ hai

ÿ haiI�m, Co��=�1ÿ haiCo�2 �50�

where I(m, Co) = 2(Co ÿ 1)[1 + (m + 1)(Co ÿ 1)]/
[m(Co ÿ 1) + 2].

By using the assumption that the liquid and gas pro-
®les are close to a single phase turbulent pro®le, we
can select m as 7 or 8. Then the power for the void

fraction pro®le is determined by equating Eqs. (46)
and (47). Here, we assumed density ratio 1000 as a
typical number for air±water ¯ow. It is found that as

void fraction is increased, the void fraction pro®le
becomes center peaked and centerline void fraction
increases. We can ®nd an appropriate void fraction

pro®le with average void fraction between 0.2 and 0.4.
However, as the void faction is less than 0.2, the expo-
nent of void pro®le becomes negative. As the void
fraction becomes bigger than 0.4, the centerline void

fraction becomes bigger than one, which is physically
unrealistic. This suggests that the liquid velocity pro®le
might be quite di�erent from the single-phase turbulent

pro®le. van der Welle [15] found in his experiment that
the exponent of power law pro®le for liquid changes as
void fraction changes. He proposed an exponent of

power pro®le, which decreases as void fraction
decreases. Though his power law pro®le is slightly
di�erent from ours, we employed the same exponent

for convenience

m � 10�1ÿ hai� �51�
As the void fraction increases, it becomes a parabolic

pro®le. By employing this pro®le, we can obtain the
reasonable void fraction pro®le which satis®es the
volumetric distribution parameter correlation (46),
when the average void fraction is between 0.2 and 0.7.

Fig. 3. Void fraction pro®le at average void fraction of 0.2,

0.5, and 0.7.
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Figs. 3 and 4 show the void fraction pro®le and the
velocity pro®le respectively as the average void fraction
changes. The trends of the void fraction pro®le are in

good agreement with experimental observations. From
Eqs. (49) and (50), the momentum ¯ux parameter is
determined as a function of void fraction and distri-

bution parameter Co. Fig. 5 shows calculated momen-
tum ¯ux parameters for gas and liquid as a function of
average void fraction.

At a given density ratio, we can calculate the stab-
ility boundary de®ned in Section 3 which is a function

of slip-ratio and modi®ed density ratio R depending
on void fraction. In Fig. 6, we compared the calculated
momentum ¯ux parameters with the stability criteria
de®ned by Eq. (31) in Section 3. Surprisingly, it is

shown that the proposed power law pro®le is stable
and located well above the stability boundary. As the
slip ratio is bigger than 1, another stability boundary

de®ned by Eq. (28) is also shown in Fig. 7. It is shown
that as the void fraction becomes bigger than 0.45, the

Fig. 4. Velocity pro®le at average void fraction of 0.2, 0.5,

and 0.7.

Fig. 5. Liquid momentum ¯ux parameter Cvf and gas momen-

tum ¯ux parameter Cvg as a function of void fraction a.

Fig. 6. Comparison of stability boundary CVG and calculated

Cvg as a function of Cvf.

Fig. 7. Comparison of stability boundary CVF and calculated

Cvf as a function of void fraction a.
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calculated liquid momentum ¯ux parameter is bigger
than the stability boundary.

4.4. Wall-peaked void fraction pro®le

Wall-peaked void fraction pro®le is observed exper-
imentally at low void fraction. Serizawa et al. [13]
measured water velocity, air velocity, and void fraction

pro®le for the air±water ¯ow in vertical pipe. He indi-
cated that for the bubbly ¯ow the bubbles are packed
near the wall. As the ¯ow changes to slug ¯ow the

bubbles are concentrated near the center. Liu and
Banko� [16,17] did similar measurements. They found
that void fraction pro®les show a distinct peak near

the wall. It is clear that the void pro®le at subcooled
boiling shows a wall-peaked void fraction.
In Section 4.3 we indicated that we can not obtain

an appropriate power law void fraction pro®le with
the wall void fraction equal to zero, when the void
fraction is less than 0.2. Therefore, it is necessary to
change our assumption that the wall void fraction is

zero. We can maintain the assumption that liquid vel-
ocity pro®le is close to single-phase turbulent pro®le
when gas void fraction is small. Since the pro®le

should be continuous at void fraction of 0.2, we
assumed that the velocity pro®le is the same as that at
a void fraction of 0.2 and the exponent of void pro®le

is inversely proportional to the average void fraction.
Then the Eqs. (46) and (47) determine the wall void
fraction as a function of average void fraction and the
density ratio. Fig. 8 shows the gas void fraction pro-

®les as the average void fraction changes. It is shown
that at a low average void fraction the void pro®le

becomes wall peaked. This is in good agreement with
experimental observations [13,16,17].

The stability of this pro®le can be examined by cal-
culating the momentum ¯ux parameters. The momen-
tum ¯ux parameters are determined only as a function

of average void fraction from Eqs. (40)±(43). Fig. 9
shows calculated momentum ¯ux parameters for gas
and liquid. It is shown that the gas momentum ¯ux

parameter decreases and liquid momentum ¯ux par-
ameter decreases as the void fraction increases.
Though, we can obtain a reasonable void fraction pro-

®le at a very low void fraction, the momentum ¯ux
parameter shows singular behavior at a very low void
fraction. In Fig. 10, we compared the calculated
momentum ¯ux parameters with the stability criteria

de®ned in Section 3. It is shown that the proposed
power law pro®le is stable and located well above the
stability criteria.

4.5. E�ect of density ratio

As the volumetric distribution parameter correlation
is valid in a wide range of density ratios, we tested
another simpli®ed ¯ow con®guration with a di�erent

density ratio. For simplicity, we considered the case
with a density ratio of 100 and an average void frac-
tion between 0.2 and 0.7. We used van der Welle's [15]

velocity pro®le for convenience. Then we can deter-
mine void fraction pro®les and momentum ¯ux par-
ameters. In Figs. 11 and 12, the comparison with the
curve of calculated momentum ¯ux parameters and the

curve of stability boundary is shown. It can be easily
seen that the ¯ow is stable.

Fig. 8. Void fraction pro®le at average void fraction of 0.05,

0.1 and 0.2.

Fig. 9. Liquid momentum ¯ux parameter and gas momentum

¯ux parameter as a function of void fraction a.
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5. Stability of incompressible one-dimensional two-¯uid

model

The stability of the governing di�erential equations
for the incompressible one-dimensional two-¯uid

model is described in terms of momentum ¯ux par-
ameters. It is shown that the two-¯uid model is stable

with certain restrictions on momentum ¯ux par-
ameters. To investigate the physical signi®cance of

stability criteria, a simpli®ed two-phase ¯ow con®gur-

ation of bubbly ¯ow with negligible local slip is con-

sidered. By using an existing correlation for the

volumetric distribution parameter and experimental

velocity pro®les, void fraction pro®les are obtained at

a void fraction of 0.05±0.7. Their trends are in good

agreement with experimental observations. The calcu-

Fig. 11. Comparison of stability boundary CVG and calcu-

lated Cvg as a function of Cvf.

Fig. 10. Comparison of stability boundary CVG and calcu-

lated Cvg as a function of Cvf.

Fig. 12. Comparison of stability boundary CVF and calculated Cvf as a function of void fraction a.
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lated momentum ¯ux parameters are found to be
located well above the stability boundary. As the volu-

metric distribution parameter is valid in a wide range
of density ratios, we looked at the applicability of pro-
posed argument at a di�erent density ratio. The results

were satisfactory. It is suggested that the two-phase
¯ow structure change its shape in such a way that the
system of governing di�erential equations remains

hyperbolic. As the momentum ¯ux parameter rep-
resents the ¯ow structure of a two phase ¯ow, such as,
velocity and void fraction variations over a ¯ow area,

the stability criteria de®ned by momentum ¯ux par-
ameters have physical signi®cance.
The majority of the computer codes for nuclear reac-

tor safety, typically represented by RELAP5/MOD3

[3], are using one-dimensional two-¯uid models with-
out momentum ¯ux parameters. This kind of one-
dimensional two-¯uid model is intrinsically unstable as

indicated by Gidaspow [4]. The present analysis
suggests use of proper momentum ¯ux parameters,
which will make the one-dimensional two-¯uid model

always hyperbolic. As the momentum ¯ux parameters
re¯ect the two-phase ¯ow structure, this proposition is
quite natural and re¯ects physical phenomena. It also

is noted that as the momentum ¯ux parameters are
close to one, the use of these parameters will not
change the previous analysis results drastically.
Though they have some restrictions, the momentum

¯ux parameters determined in this paper can be used
for a pilot computer code practically.

6. Conclusion

By employing momentum ¯ux parameter, the pre-

sent paper demonstrated that incompressible one-
dimensional two-¯uid model is stable with certain
restrictions on momentum ¯ux parameters for gas and

liquid. A simpli®ed two-phase ¯ow con®guration is
considered. By using existing correlation and exper-
imental results, the tested ¯ow con®guration is found

to be in the stable region, when compared with stab-
ility criteria described by momentum ¯ux parameters.
These analyses results suggest that the one-dimensional
two-¯uid model should be used with momentum ¯ux

parameters. It is bene®cial because it re¯ects ¯ow
structure and it helps to stabilize the governing di�er-
ential equations.

Acknowledgements

This research was supported by the Korean Ministry
of Science and Technology.

References

[1] M. Ishii, Thermo-¯uid Dynamic Theory of Two-phase

Flow, Eyrolles, Paris, 1975.

[2] M. Ishii, K. Mishima, Two-¯uid model and hydrodyn-

amic constitutive relations, Nuclear Engineering and

Design (1984) 107±126.

[3] Ransom et al., RELAP5/MOD3 Code manual;

NUREG/CR-5535, Idaho National Engineering

Laboratory, 1995.

[4] D. Gidaspow, Modeling of two phase ¯ow. In:

Proceedings of the Fifth International Heat Transfer

Conference, 1974, VII. p. 163.

[5] J.H. Stuhmiller, The in¯uence of interfacial pressure

forces on the character of two-phase ¯ow model

equations, Int. J. Multiphase Flow 3 (1977) 551±560.

[6] A.V. Jones, A. Prosperetti, On the stability of ®rst-order

di�erential models for two-phase ¯ow prediction, Int. J.

Multiphase Flow 11 (2) (1985) 133±148.

[7] R.T. Lahey, et al., The e�ect of virtual mass on the nu-

merical stability of accelerating two-phase ¯ow, Int. J.

Multiphase Flow 6 (1980) 281±294.

[8] N. Brauner, D.M. Maron, Stability analysis of strati®ed

liquid±liquid ¯ow, Int. J. Multiphase Flow 18 (1) (1992)

103±121.

[9] S. Kalkach-Navarro, R.T. Lahey, D.A. Drew, Analysis

of the bubbly/slug ¯ow regime transition, Nuclear

Engineering and Design 151 (1994) 15±39.

[10] C.K. Sung, M.H. Chun, Onset of slugging criterion

based on singular points and stability analyses of transi-

ent one dimensional two-phase ¯ow equations of two-

¯uid model, J. Korean Nuclear Society 28 (3) (1996)

299±310.

[11] R.W. Lyczkowski, et al., Characteristic and stability

analyses of transient one-dimensional two-phase ¯ow

equations and their ®nite di�erence approximations,

Nuclear Science and Engineering 66 (1978) 378±396.

[12] M. Ishii, One dimensional drift-¯ux model and constitu-

tive equations for relative motion between phases in

various two-phase ¯ow regimes, ANL-77-47, Argonne

National Laboratory, 1977.

[13] A. Serizawa, I. Kataoka, I. Michiyoshi, Turbulence

structure of air±water bubbly ¯ow Ð II. Local proper-

ties, Int. J. Multiphase Flow 2 (1975) 235±246.

[14] R.A. Herringe, M.R. Davis, Structural development of

gas±liquid mixture ¯ows, J. Fluid Mech. 73 (1) (1976)

97±123.

[15] R. van der Welle, Void fraction, bubble velocity and

bubble size in two-phase ¯ow, Int. J. Multiphase Flow

11 (3) (1985) 317±345.

[16] T.J. Liu, S.G. Banko�, Structure of air±water bubbly

¯ow in a vertical pipe Ð I. Liquid mean velocity and

turbulence measurements, Int. J. Heat Mass Transfer 36

(4) (1993) 1049±1060.

[17] T.J. Liu, S.G. Banko�, Structure of air±water bubbly

¯ow in a vertical pipe Ð II. Void fraction, bubble vel-

ocity and bubble size distribution, Int. J. Heat Mass

Transfer 36 (4) (1993) 1049±1060.

J.H. Song, M. Ishii / Int. J. Heat Mass Transfer 43 (2000) 2221±2231 2231


